FAIR USE NOTICE

FAIR USE NOTICE

A BEAR MARKET ECONOMICS BLOG

OCCUPY THE SCIENTIFIC METHOD


This site may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in an effort to advance understanding of environmental, political, human rights, economic, democracy, scientific, and social justice issues, etc. we believe this constitutes a ‘fair use’ of any such copyrighted material as provided for in section 107 of the US Copyright Law.

In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. For more information go to: http://www.law.cornell.edu/uscode/17/107.shtml

If you wish to use copyrighted material from this site for purposes of your own that go beyond ‘fair use’, you must obtain permission from the copyright owner.

FAIR USE NOTICE FAIR USE NOTICE: This page may contain copyrighted material the use of which has not been specifically authorized by the copyright owner. This website distributes this material without profit to those who have expressed a prior interest in receiving the included information for scientific, research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107.

Read more at: http://www.etupdates.com/fair-use-notice/#.UpzWQRL3l5M | ET. Updates
FAIR USE NOTICE FAIR USE NOTICE: This page may contain copyrighted material the use of which has not been specifically authorized by the copyright owner. This website distributes this material without profit to those who have expressed a prior interest in receiving the included information for scientific, research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107.

Read more at: http://www.etupdates.com/fair-use-notice/#.UpzWQRL3l5M | ET. Updates

All Blogs licensed under Creative Commons Attribution 3.0

Tuesday, February 4, 2014

Proton radius puzzle may be solved by quantum gravity


phys.org



Proton radius puzzle may be solved by quantum gravity

Nov 26, 2013 by Lisa Zyga feature 
 Proton radius puzzle may be solved by quantum gravity
 (Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size. 
 But when trying to further improve the precision of the radius value in 2010 with a third experimental technique, physicists got a value of 0.842 ± 0.001 fm—a difference of 7 deviations from the official value. These experiments used muonic hydrogen, in which a negatively charged muon orbits around the proton, instead of atomic hydrogen, in which an electron orbits around the proton. Because a muon is 200 times heavier than an electron, a muon orbits closer to a proton than an electron does, and can determine the proton size more precisely.
This inconsistency between proton radius values, called the "proton radius puzzle," has gained a lot of attention lately and has led to several proposed explanations. Some of these explanations include new degrees of freedom beyond the Standard Model, as well as extra dimensions.

Now in a new paper published in EPL, physicist Roberto Onofrio at the University of Padova in Padova, Italy, and the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, has suggested that the muonic hydrogen experiment may be providing a hint of quantum gravity. He has proposed that the proton radius puzzle can be solved by considering a new theory of quantum gravity that is based on the unification of gravity and the weak force, also called "gravitoweak unification."

In this theoretical scenario, conventional Newtonian gravity holds at large distances, but morphs into a different kind of gravitational interaction at very small scales. Specifically, the strength of the gravitational interactions is equal to the strength of the weak charged interactions that occur among subatomic particles. The weak charged interactions can be considered as manifestations of the quantized structure of gravity at or below the Fermi scale.

As Onofrio theoretically shows in his paper, quantum gravity of this nature contributes an additional binding energy to the muonic hydrogen experiments, which explains the smaller proton radius value. In these experiments, the proton radius value was measured in terms of an energy difference between two energy levels, called the Lamb shift.
Onofrio calculated that the gravitational energy contribution in the atomic hydrogen experiments is about two orders of magnitude smaller than in the muonic hydrogen experiments, due to the electron's smaller mass compared to the muon. Onofrio evaluated that the energy contribution should be noticeable when measuring the Lamb shift of , and its absence in the data could imply the presence of a flavor-dependent interaction, similar to what happens already for the well-known charged weak interaction.
"Muonic hydrogen is unique in that it probes small distances at an unprecedented precision, so it may pick up any small force acting between the constituents," Onofrio told Phys.org. "Since the explanation I provide relies on the mass of the nuclei, complementary tests may be performed on variants of muonic hydrogen currently under experimental study, more specifically the measurement of the Lamb shift in muonic deuterium, and muonic helium spectroscopy. In the EPL paper, I make a definite prediction for muonic deuterium, for instance."

Perhaps the most exciting outcome of this work is that it shows that muonic may be used to test possible scenarios of gravitoweak unification, with providing evidence of gravity's effects at very small scales.
"This work shows that the combination of high-precision spectroscopy and the use of exotic atoms with size in between ordinary atoms and nuclei may open a novel way to test physics at the attometer scale, a scale at which, according to my conjecture developed in a former paper, is acting also under the form of what we now know as weak interactions," Onofrio said.

Onofrio plans to continue to pursue the gravitoweak conjecture in various directions, and to investigate how it matches with what we know from the Standard Model of particle physics in which weak interactions are mixed with electromagnetic ones. He has outlined the future research landscape in a second paper, listed below.
 
Explore further: Updating the textbook: Is the radius of a proton wrong?
More information: Roberto Onofrio. "Proton radius puzzle and quantum gravity at the Fermi scale." EPL, 104 (2013) 20002. DOI: 10.1209/0295-5075/104/20002
Roberto Onofrio. "On Weak Interactions as Short-Distance Manifestations of Gravity." Modern Physics Letters A, Vol. 28, No. 7 (2013) 1350022 (7 pages). DOI: 10.1142/S0217732313500223
Journal reference: Europhysics Letters (EPL) search and more info website Physics Letters A search and more info website
 
Explore further: Updating the textbook: Is the radius of a proton wrong?
More information: Roberto Onofrio. "Proton radius puzzle and quantum gravity at the Fermi scale." EPL, 104 (2013) 20002. DOI: 10.1209/0295-5075/104/20002
Roberto Onofrio. "On Weak Interactions as Short-Distance Manifestations of Gravity." Modern Physics Letters A, Vol. 28, No. 7 (2013) 1350022 (7 pages). DOI: 10.1142/S0217732313500223


Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
 

Related Stories

Physicists confirm surprisingly small proton radius

Jan 24, 2013
International team of physicists confirms surprisingly small proton radius with laser spectroscopy of exotic hydrogen. The initial results puzzled the world three years ago: the size of the proton (to be precise, its charge ...

Particle physics: 'Honey, I shrunk the proton'

Jul 07, 2010
Scientists lobbed a bombshell into the world of sub-atomic theory on Wednesday by reporting that a primary building block of the visible Universe, the proton, is smaller than previously thought.

Recommended for you

Big chill sets in as RHIC physics heats up

1 hour ago
If you think it's been cold outside this winter, that's nothing compared to the deep freeze setting in at the Relativistic Heavy Ion Collider (RHIC), the early-universe-recreating "atom smasher" at the U.S. ...

Ultra-small ultrasounds

3 hours ago
Andre Bezanson is still working on his PhD, but he's already making waves in the field of ultrasound imaging.

Explainer: What is X-ray crystallography?

3 hours ago
Around 100 years ago a father and his son in north England conducted an experiment that would revolutionise the way scientists study molecules. A refined version of their method still remains one of the most ...

 
 
 
 
 
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
 
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
 
The quark structure of the proton. Credit: Arpad Horvath / Wikipedia.
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.


Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
The quark structure of the proton. Credit: Arpad Horvath / Wikipedia.
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.


Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
The quark structure of the proton. Credit: Arpad Horvath / Wikipedia.
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.


Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
The quark structure of the proton. Credit: Arpad Horvath / Wikipedia.
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.


Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
The quark structure of the proton. Credit: Arpad Horvath / Wikipedia.
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.


Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
The quark structure of the proton. Credit: Arpad Horvath / Wikipedia.
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.


Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
 
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCpvvv
(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size.

Read more at: http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html#jCp
 
 
 
 
 
 
 

No comments:

Post a Comment